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Linearity and State Space



Lecture overview
• Linear systems

• State-space representation



Linear Systems
• In mathematics a system is said to be linear if*;

𝑦 = 𝑎𝑥

Or more generally  

𝑦 = 𝑎𝑥! + 𝑏𝑥" + 𝑐𝑥#

• Technically, including a constant term makes the system non-linear;

𝑦 = 𝑘 + 𝑎𝑥! + 𝑏𝑥" + 𝑐𝑥#

• This is known as an affine function (system) and can be dealt with in 
much the same way as a truly linear system.

Linear Systems
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*the actual definition is a bit more technical and is written in terms of the principle of superposition, 
we will focus on linear systems so the exact definition doesn’t matter (but please look it up!)



Linear Systems

• Linear systems are important since the 
mathematics around them is more fully 
developed.
• There are many open questions around non-

linear systems including finding of more 
general solutions.
• Most non-linear systems can be linearised

(around a point) which provides a means of 
making some intractable nonlinear system 
problems tractable.

Linearisation around x for f(x).  
Note that the approximation is 
good close to x but less good as 
one moves away from x to f(x+h) 
for example.

correction…traced 
out by the green 

line, f(x) …



Linear or non-linear??

Vehicle Dynamics and Simulation  2 Modelling and Simulation  

Generation of differential equations (simple examples) 
Dynamic models are described in terms of a series of differential equations which can always 
be reduced to a set of first order differential equations.  Two examples which we will refer to 
in these notes are the simplified single degree-of-freedom suspension model, and the bouncing 
ball model (shown below).  Note that the ‘simplification’ stage of model design has already 
been completed for these cases – the former being reduced to a rigid mass suspended over a 
point which is fixed on the ‘road’ by a simple spring and viscous damper (and which moves 
only vertically); the latter switches between contact and non-contact conditions. 

resting level 
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Figure 1 : Suspension (body bounce), and bouncing ball models 
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Aside : A quick note on sign conventions 

I have drawn the direction I am taking as positive for forces and deflections in the diagrams above 
(velocities and accels will obviously take the same signs as the deflections).  Provided I then write 
the equations to be consistent with these (note how Fs depends on ) it doesn’t matter 

which direction I take as positive.  For example, if forces Fs were drawn with arrows into the centre 
(pulling up on the ‘road’ and down on the body) I would have to write the equations as 

, , ,b r b rz z z z� �
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System	Equations

𝑥̇! = 𝑥"

𝑥̇" =
𝐾
𝑀 𝑥# − 𝑥" +

𝐵$
𝑀 (𝑢 − 𝑥")

𝑥̇# = 𝑢



Linear Systems
• The mathematical description of the system states is written as a set of 𝑛 coupled first order 

equations;

𝑥
.
" = 𝑓"(𝒙, 𝒖, 𝑡)

⋮
𝑥
.
# = 𝑓#(𝒙, 𝒖, 𝑡)

• If we restrict our type of system to those that are (very nearly) linear and time invariant, we can 
write the system state change i.e. state equations as a linear combination of inputs, 𝑢$ and states, 
𝑥$

𝑥
.
" 𝑡 = 𝑎""𝑥" + 𝑎"%𝑥% +⋯+ 𝑎"#𝑥# + 𝑏""𝑢" +⋯+ 𝑏"&𝑢&

⋮
𝑥
.
# 𝑡 = 𝑎#"𝑥" + 𝑎#%𝑥% +⋯+ 𝑎##𝑥# + 𝑏#"𝑢" +⋯+ 𝑏#&𝑢&

Where 𝑛 is the number of states and 𝑟 the number of inputs.



State Space Representation

• Writing in matrix form;

𝑥
.
3
𝑥
.
4
⋮
𝑥
.
5

=

𝑎33 𝑎34 ⋯ 𝑎35
𝑎43 𝑎44 ⋯ 𝑎45
⋮ ⋮ ⋯ ⋮
𝑎53 𝑎54 ⋯ 𝑎55

𝑥3
𝑥4
⋮
𝑥5

+

𝑏33 𝑏34 ⋯ 𝑏36
𝑏43 𝑏44 ⋯ 𝑏46
⋮ ⋮ ⋯ ⋮
𝑏53 𝑏54 ⋯ 𝑏56

𝑢3
𝑢4
⋮
𝑢6

or

𝒙
.
= 𝑨𝒙 + 𝑩𝒖

This tells us how the 
states, 𝒙

.
changes but 

not what the outputs 
are.



State Space Representation

• The states don’t include information necessary for engineering 
purposes. 
• In addition states can be arbitrarily chosen and therefore may not 

represent anything physically meaningful.
• An output variable (arbitrary) can be written as linear combination of 

states 𝑥7 and inputs 𝑢7;

𝑦3 𝑡 = 𝑐3𝑥3 + 𝐶3𝑥4 +⋯+ 𝑐5𝑥5 + 𝑑3𝑢3 +⋯+ 𝑑6𝑢6



State Space Representation
• If we are interested in 𝑚 output variables, we can write 𝑚 equations as;

𝑦) 𝑡 = 𝑐))𝑥) + 𝑐)*𝑥* +⋯+ 𝑐)+𝑥+ + 𝑑))𝑢) +⋯+ 𝑑),𝑢,
⋮

𝑦- 𝑡 = 𝑐-)𝑥) + 𝑐-*𝑥* +⋯+ 𝑐-+𝑥+ + 𝑑-)𝑢) +⋯+ 𝑑-,𝑢,

• Or in matrix form;

𝑦)
𝑦*
⋮
𝑦-

=

𝑐)) 𝑐)* ⋯ 𝑐)+
𝑐*) 𝑐** ⋯ 𝑐*+
⋮ ⋮ ⋯ ⋮
𝑐-) 𝑐-* ⋯ 𝑐-+

𝑥)
𝑥*
⋮
𝑥+

+

𝑑)) 𝑑)* ⋯ 𝑑),
𝑑*) 𝑑** ⋯ 𝑑*,
⋮ ⋮ ⋯ ⋮

𝑑-) 𝑑-* ⋯ 𝑑-,

𝑢)
𝑢*
⋮
𝑢,



State Space representation
𝒚 = 𝑪𝒙 + 𝑫𝒖

• Note how the output 𝒚 (a vector) is a combination of inputs and 
current state after a transformation (multiplication by 𝑪 and 𝑫
respectively) 
• For many real systems 𝑫𝒖 is not necessary, so;

𝒚 = 𝑪𝒙

• The output is just the states multiplied by some vector 𝑪 (a property 
of the system)

* Matrix transformation



Conclusion

• Linear systems
• State space representation



Tutorial



Tutorial - State Space Representation
• Try for yourself;

• Spring stiffness; !
"
= !

"&
+ !

"'

𝐹. = ⋯

𝐹. = 𝐾 𝑧/ − 𝑧, + 𝐵.(𝑧
.
/ − 𝑧

.
,)

Σ𝐹 = 𝑚𝑎

−𝐹. = 𝑀𝑧̈/
𝑀𝑧̈/ = 𝐾 𝑧, − 𝑧/ + 𝐵.(𝑧

.
, − 𝑧

.
/)
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Generation of differential equations (simple examples) 
Dynamic models are described in terms of a series of differential equations which can always 
be reduced to a set of first order differential equations.  Two examples which we will refer to 
in these notes are the simplified single degree-of-freedom suspension model, and the bouncing 
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Aside : A quick note on sign conventions 
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the equations to be consistent with these (note how Fs depends on ) it doesn’t matter 
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Sign convention: +ve
direction indicated

by arrow heads
(1)


